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1. Introduction 

1.1 Scope of the document 

The scope of this document is to define the workflow for generating synthetic data, to present 

the available real patient data and to implement the synthetic generator model using the 

collected data.   

In particular, it describes the input data parameters needed for the successful implementation 

of the model and it creates the workflow (including the algorithm flowchart) for generating 

synthetic data and validating the results. The modules and functions of the generator model are 

also described along with the input arguments (and their requirements) and the files needed for 

the execution of the model. Finally, the report outlines common evaluation metrics that can be 

used for the evaluation procedure. 

 

2. Definition of the workflow for generating synthetic data  

2.1 Approach 

A sequential procedure will be followed in this work for the development of the synthetic 

generator model. Initially, real data from patients with prostate cancer will be collected. The 

real patient data will be then cleansed to ensure data validity and sanity (i.e., high quality data). 

The cleansed data will be then fed into a synthetic data generator model. To this end, a synthetic 

data generator model will be developed. The filtered data will be used to train the model so that 

it learns the structure and the information contained. Once trained, the generator will be able to 

generate new synthetic data. Different models will be developed using machine learning 

principles. Ensemble learning will be then utilised for pooling the results of the multiple 

implemented models and averaging them using weights based on accuracy, to minimize 

modelling errors and bias. Once the best performing generator is derived, the quality of its 

generated synthetic data will be assessed using common metrics to define the extent to which 

the statistical properties of the real data are captured to the synthetic data sets and how much of 

the real data may be revealed (directly or indirectly) by the synthetic data.  

Figure 1 summarises the workflow for generating the synthetic data. 

 

Gather real 

patient data

Pre-process/

clean data

Synthetic data 

generator

Evaluate 

generated data

Generate 

data
 

Figure 1. Flowchart of the proposed methodology. 

 

3. Collection of patient data and available data set 

3.1 Data collection 

Records/Data from 1222 patients with prostate cancer were collected at 11 different centres [1]. 

These data will be used for the implementation of the synthetic data generator. The data were 

gathered by the German Oncology Center (GOC – PA1). To address patient confidentiality, the 

records were anonymised, and policies and confidentiality agreements were signed between the 

project partners.  

 

3.2 Background information and description of collected data  
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The patients under study received salvage radiotherapy (sRT). The treatment decision process 

of sRT is directly affected by the prostate-specific membrane antigen positron-emission 

tomography (PSMA-PET), which is increasingly used for staging patients with biochemical 

relapse or prostate-specific antigen (PSA) persistence after radical prostatectomy. 

The collected data include several variables such as the age of the patient, the disease and 

treatment (PSMA PET-guided salvage radiotherapy, sRT, for prostate cancer patients with 

biochemical relapse after prostatectomy), clinical data (such as PSA pre sRT, Gleason score, 

pathological [pT] stage, resection (R) status, local relapse in PET, nodal relapse in PET, time 

gap between surgery and relapse, PSA persistence), treatment variables (such as dose to the 

prostatic fossa, dose to elective pelvic lymphatics, dose to PET-positive pelvic lymph nodes 

[PLN], duration of androgen deprivation therapy) and the outcome variable - biochemical 

relapse (as time to event endpoint: biochemical-recurrence free survival). 

Table 1 summarises the available input variables and provides a short explanation/description 

of the input parameters along with the collected values and coding. 

 
Table 1: Description of the input variables - collected data. 

ID Input Variable Units Subgroups meaning Code for subgroups / 

Collected values 

1 age at sRT years  36-81 

2 initial PSA (code) ng/ml   

3 

pT stage at surgery (code)   2  

3a 

3b 

4 

unknown 

1 

2 

3 

4 

empty 

4 

pT stage at surgery (binarized I)   0 

1 

empty 

5 

pT stage at surgery (binarized II)   0 

1 

empty 

6 

pN stage at surgery (code)  0 

1 

unknown  

0 

1 

empty 

7 

R stage at surgery (code)  0 

1 

2  

not sure 

unknown 

0 

1 

2 

3 

empty 

8 

R stage at surgery (binarized)   0 

1 

empty 

9 

ISUP score in surgery specimen (code)  1+2 

3 

4 

5 

unknown 

1 

2 

3 

4 

empty 

10 

ISUP score in surgery specimen (binarized)   0 

1 

empty 

11 

PSA persistence after surgery (defined as PSA ≥ 

0.1 ng/ml) (code) 

ng/ml no 

yes 

unknown 

0 

1 

empty  

12 

Time gap between surgery and recurrent disease 

(code) 

years 0-1 

>1 

unknown 

1 

2 

empty 
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13 

PSA doubling time  (code) months 0-6 

6.1-12 

>12 

unknown 

1 

2 

3 

empty 

14 

PSA before PET (code) ng/ml 0.01-0.2 

0.21-0.5 

0.51-1 

>1 

Unknown 

1 

2 

3 

4 

empty 

15 

PSMA/PET tracer (code)  68Ga-PSMA-11 

68Ga-PSMA-I&T 

18F-PSMA-1007 

18F-PSMA-DCFPyL 

18F-rhPSMA-7 

18F-rhPSMA-7.3 

Other 

Unknown 

1 

2 

3 

4 

5 

6 

7 

empty 

16 

PET findings (code) yes/no No findings in PET  

any findings in PET 

Unknown 

0 

1 

empty 

17 Local failure - miTr     

18 Nodal failure – miN     

19 

PSA before sRT (code) ng/ml 0.01-0.2 

0.21-0.5 

0.51-1 

>1 

Unknown 

1 

2 

3 

4 

empty  

20 

PSA before sRT (binarized)   0 

1 

21 

Time between PET and beginning of sRT (code) months <3 months 

3-6 months 

>6 months  

unknown 

0 

1 

2 

empty 

22 

All PET positive lesions located in the RT field 

(code) 

yes/no no 

yes 

unknown 

0 

1 

empty 

23 

sRT to fossa (code)  yes/no no 

yes 

unknown 

0 

1 

empty 

24 

sRT dose to fossa or boost dose to PET positive 

lesion in the fossa (code) 

Gy <66 Gy 

66-70 Gy 

>70 Gy 

Unknown 

1 

2 

3 

empty 

25 

sRT dose to fossa (binarized)   0 

1 

empty 

26 

sRT to pelvic LN (code) yes/no no 

yes 

unknown 

0 

1 

empty 

27 

sRT dose to pelvic LN (code) Gy Unknown 

<50 Gy  

50-60 Gy 

>60 Gy 

Unknown 

0 

1 

2 

3 

empty 

28 

sRT to elective pelvic lymphatics (code)  no 

whole-pelvis 

half-pelvis 

other 

unknown 

0 

1 

2 

3 

empty 

29 

Dose to elective pelvic lymphatics (code) Gy ≤50 Gy  

>50 Gy 

1 

2 
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Unknown empty 

30 

ADT (code)  yes/no no 

yes 

unknown 

0 

1 

empty 

31 

Duration of ADT (code)  months <6 months 

6-12 months 

>12-24 months 

> 24 months 

Unknown 

0 

1 

2 

3 

empty 

32 

Time gap between end of ADT and last follow 

(code) 

months  0 

1 

2 

3 

11 

12 

17 

22 

48 

empty 

33 

PSA relapse (code)  yes/no no 

yes 

unknown 

0 

1 

empty 

34 

Time to relapse  months  1-120 

empty 

35 

Relapse under ongoing ADT (code)   no 

yes 

unknown 

1 

0 

empty 

36 

Death of PCa (code) yes/no  no 

yes 

unknown 

0 

1 

empty 

37 

Time to death of PCa months  6-82 

empty 

38 Time to last FU months  2-86 

39 

Death at last FU  yes/no  no 

yes 

0 

1 

40 

Include FFBF    1 

empty 

41 

Metastases yes/no no 

yes 

unknown 

0 

1 

empty 

42 

Time to metastases  months  2-85 

empty 

43 

PSMA re-staging    0 

1 

empty 

44 

Include DM (all imaging)   1 

empty 

45 

Include DM (PSMA only)   1 

empty 

* Abbreviations: androgen deprivation therapy (ADT), follow up (FU), Freedom from biochemical failure (FFBF), 

International Society of Urological Pathology (ISUP), lymph node (LN), positron-emission tomography (PET), prostate cancer 

(PCa), prostate-specific antigen (PSA), prostate-specific membrane antigen positron-emission tomography (PSMA PET), 

salvage radiotherapy (sRT). 

 

Finally, screenshots from the collected patient data and variables are shown in Figure 2. 
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Figure 2. Screenshots depicting the available data (provided by the GOC – PA1) and some of the recorded variables. 

 

4. Cleansing of patient data and final data set 

4.1 Data cleansing process 

The available data will be first examined for missing values and then the cleaned (i.e., the final) 

data set will be created. For the data cleansing process, an analysis will be performed to test 

which of the variables have significant impact on the outcome variable. Only these input 

variables will be included in the final data set. It is also worth noting here that for missing values 

in the “significant” variables, the entire patient record will be excluded from the final data set. 

Finally, data statistics (e.g., min and max values, median, average, etc.) will be derived for each 

variable in the final data set. The same data set will be then used for the development of 

synthetic data generator model (MS6). 

 

4.2 Input parameters selection, final data set and initial statistics 

The statistical analysis for testing which of the available input variables have significant impact 

on the outcome variable has already been performed and reported by recent studies in the field 

[1]–[4]. Following their recommendations and the obtained results, the input variables of pT 

stage, R status, PSA serum values before sRT, ADT use, dose to the prostatic fossa, persistence 

of PSA after surgery and PET related variables (i.e., PLN or local recurrences prior to sRT) 

were selected as the significant ones. Other variables, such as the biochemical disease-free 

interval between surgery and sRT, the presence of PLN in the surgical specimen, PSA doubling 

time, and preoperative PSA, were not selected due to limited predictive values in previous 

studies [1]–[4].  

To enable unbiased analysis and proper development of the generator, patients with missing 

clinical data for the significant variables (the ones with IDs 3-5, 7-11, 17-20, 22-25 and 30) 
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were excluded. Overall, 192 patients were excluded (more details are given in Table 2), thus 

the remaining 1030 patients were included in the final data set.  

 
Table 2: Data cleansing results for the data set under study. 

 Records 

Total number of patients (all raw data) 1222 

Removed due to missing medical records 183 

Exclusion of Fossa from the sRT field 4  

(55 in total with the incomplete records) 

All PET lesions in RT field - PSMA-PET avid lesions not covered by the sRT 

field 

5  

(6 in total with the incomplete records) 

Total Excluded 192 

Remaining 1030 

 

The statistics for the final data set (including the baseline patient and treatment characteristics) 

are summarised in Table 3. The analysis revealed that 632 patients (61.36%) had PSA serum 

values before sRT of 0.5 ng/mL or less, 438 patients (42.52%) had PET scan-detected locally 

recurrent disease, and 317 patients (30.727%) had at least 1 PLN-PET. ADT was prescribed for 

325 of 1030 patients (31.55%). None of the patients in this study received an escalation of 

systemic therapy beyond ADT.  

In addition, the most frequently applied equivalent dose in 2 Gy per fraction (EQD2, α/β = 1.6 

Gy) to the prostatic fossa or to local recurrent disease was 66 to 70 Gy (551 of 1030 [53.49%]). 

On results of PSMA-PET scan prior to sRT, 438 of 1030 patients (42.52%) had local 

recurrences, while 313 of 1030 patients (30.38%) had nodal recurrences. Salvage radiotherapy 

to elective pelvic lymphatics was delivered to 395 of 1030 patients (38.34%). All PLN-PETs 

received dose-escalated sRT; the most frequent dose (129 of 264 [48.86%]) was 50 to 60 Gy 

(EQD2, α/β = 1.6 Gy). Finally, 338 patients (32.81%) had biochemical relapse after a median 

follow-up time (the median time to relapse was 26 months). 

 
Table 3: Data statistics for the final data set (including patient’s and treatment characteristics). 

Characteristic Patients 

Age at sRT, years Median IQR Average Min Max Total 

 70 64-74 69 42 89  

pT stage 

2 

3a 

3b 

4 

      

461 

327 

235 

7 

Resection status in surgery 

R0 

R1 

R2 

Rx 

      

674 

327 

3 

26 

ISUP grade in surgery 

1+2 

3 

4 

5 

      

372 

324 

156 

178 

PSA persistence after surgery 

No 

Yes 

      

751 

279 

PSA before sRT, ng/mL 

0.01-0.2 

0.2-0.5 

      

246 

386 
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0.5-1 

>1 

172 

226 

Local recurrence after PSMA-PET 

No 

Yes 

      

592 

438 

Pelvic lymph nodes after PSMA-PET 

No 

Yes 

      

713 

317 

Dose to the prostatic fossa, Gy 

<66 

66-70 

>70 

      

103 

551 

376 

sRT to elective pelvic lymphatics 

No 

Yes 

      

634 

395 

Dose to elective pelvic lymphatics, Gya 

≤50 

>50 

Unknown 

      

267 

47 

716 

Irradiation to positive pelvic LNs * 

No 

Yes 

      

713 

317 

Dose to positive pelvic LNs, Gy 

≤50 

50-60 

>60 

Unknown 

      

21 

129 

114 

766 

ADT 

No 

Yes 

      

705 

325 

Duration of ADT admission, months 

<6 

6-12 

12-24 

>24 

Unknown 

      

65 

110 

57 

49 

749 

* PLN defined by PSMA-PET imaging or based on localization of pN+ status in surgery. 

 

5. Implementation of the synthetic data generator model 

5.1 Literature review 

A literature survey revealed that the healthcare synthetic data are generated by utilising process-

driven or data-driven methods [5]. The first-class of synthetic data are derived from 

computational or mathematical models of an underlying physical process. Process-driven 

methods include numerical and Monte Carlo simulations, agent-based modelling, and discrete-

event simulations. On the other hand, data-driven methods operate on observed data to derive 

the synthetic data using generative models. In this work, focus is shed on data-driven models. 

As indicated by Goncalves et al. [5], there are 3 main types of data-driven methods: imputation 

based methods, full joint probability distribution methods and function approximation methods. 

Imputation based methods are fully probabilistic and include multiple imputation techniques in 

the context of Statistical Disclosure Control (SDC) and Statistical Disclosure Limitation (SDL) 

methodologies. In this domain, generalized linear regression models and non-linear methods 

(e.g., Random Forest and neural networks) have been utilised. Full joint probability distribution 

methods include statistical algorithms (e.g., parametric and non-parametric Bayesian networks) 



D6, Synthetic data generator 

Page | 10  

 

for generating fully synthetic data by estimating, learning or approximating a joint probability 

distribution. 

With the current advances in the field of artificial intelligence (AI) and the development of 

computational power, the generation of synthetic data from machine learning (ML) techniques 

has attracted a lot of attention lately. State-of-the-art ML and deep learning algorithms have 

seen an unprecedented growth in popularity, and they have been incorporated into probabilistic 

models, creating a new generation of models (i.e., the Deep Generative Models, DGMs) that 

exploit deep learning for creating synthetic data. Such models are based on function 

approximation methods using the conventional train and test set approach. Regarding DGMs, 

Generative Adversarial Networks (GANs), Markov Chain and Variational AutoEncoders 

(VAE) models were used to generate new data instances with or without an explicit formulation 

of the data probability density function. GANs have shown remarkable results in many fields 

[6] and are considered as “the preferable method” to generate synthetic data due to the 

construction of robust models with less labelled data. In the health sector, the GANs method 

has been used successfully for unsupervised learning tasks and for generating health data. A 

general limitation of GANs is the inability for generating categorical synthetic data sets. To 

alleviate the GANs drawback, improved generative GANs methods (or extended GANs-based 

models such as the medGAN, HealthGAN, etc.) have been lately introduced by researchers [7]. 

Such methods are based on the Wasserstein GAN and use a novel variant of the categorical 

encoding method to handle mixed categorical and discrete data.  

From a literature search, open-source software packages also exist for synthetic data generation 

(e.g., the R packages synthpop [8] and SimPop [9], the Python package DataSynthesizer [10], 

the Python library Synthetic Data Vault (SDV) [11] and the Java-based simulator Synthea [12]). 

Though, such generators were not deemed suitable to simulate healthcare synthetic data as part 

of the research work to be undertaken in this proposal. In particular, the R package synthpop 

for generating synthetic does not include appropriate procedures for synthesizing multiple event 

data and the choice for replacing only selected cases from selected variables is not available 

(currently all values of variables chosen for synthesis are replaced). Likewise, the R package 

simPop implements model-based methods to simulate synthetic populations and it is based on 

household survey data and auxiliary information. The Python package DataSynthesizer 

increases the computational burden (compared to the other methods) due to the constructed 

differentially private Bayesian network and enforced consistency among the noisy marginals. 

Similarly, the Synthea simulator is based on publicly available summary statistic data, and 

therefore it does not provide the flexibility of creating faithfully generative models that 

resemble real data. Finally, one of the most popular open-source synthetic data generators is 

the SDV library, that builds a ML model using synthetic data. The SDV uses a variety of ML 

algorithms to learn patterns from the real data and emulate them in synthetic data. Though, it 

was recently shown that SDV’s performance was measured at 40% accuracy, highlighting a 

significant disparity in the results [13]. 

Apart from the open-source software packages, dedicated websites (such as MOSTLY AI [14]) 

for generating synthetic data were recently developed. Such websites combine the most recent 

advances in generative AI with a thorough grasp of data protection and compliance. Currently, 

MOSTLY AI is claimed to be one of the best AI-powered synthetic data generator, using 

different types of data sets [13]. 

To sum up, different techniques and tools have been proposed for data synthesis and all of them 

have their merits/advantages and drawbacks. The selection of the model is case dependent, and 
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the quality of the synthetic generated data is highly dependent on the quality of the model (and 

hence data) that created it. There is always a trade-off between the features, the computational 

burden, and the data availability, as well as a trade-off between data utility and privacy.  

Since cancer patient data are available for the AVATAR project, the team members decided to 

proceed with the development of an AI-powered generator based on DGMs for high-quality (in 

terms of data utility and information disclosure) synthetic health data. 

 

5.2 Synthetic data generator models 

5.2.1 Implementation of existing solutions for synthetic data generation 

Initially, the open-source software package synthpop [8] was used for generating synthetic data. 

The results are summarized in Figure 3. To measure utility, the propensity mean squared error 

(pMSE) metric, that predicts whether the synthetic data can be distinguished from the original, 

was used. The pMSE ranged from 0.04 to 4.11. 

 

 

 
Figure 3. Screenshots of the results generated by synthpop package. 

Apart from the open-source R package, the MOSTLY AI (available at https://mostly.ai/) 

solution was tested. The results are summarized in Figure 4. The trained model by MOSTLY 

AI showed high accuracy when representing the statistics of the real patient data. Identical 

matches between the synthetic and real samples were found for 4.27%.  

 

https://mostly.ai/
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Figure 4. Screenshots of the results generated by MOSTLY AI [14].  

 

5.2.2 Proposed synthetic data generator model 

An innovative AI-powered generation system that leverages machine learning principles (e.g., 

DGMs) and ensemble modelling was developed to create privacy preserving synthetic heath 

data. AI-driven generative models were selected for the implementation of the generator since 

they can capture complex functions, they can compute non-linear input–output mappings and 

their effectiveness depend on the provided data. Given the available data (that are balanced and 

of high quality – ensured by the data pre-processing step) from PA1, more robust ML models 

can be built. The available data were used for the training procedure of the ML models. The 

final synthetic generator model (derived from ensemble modelling) was used to generate the 

new data (i.e., the synthetic data). Comparison/analysis between the real and synthetic 

generated data was then performed to evaluate the performance of the generator. The innovative 

character of this generator lies in the usage of the ensemble modelling technique for pooling 

the results of multiple models (in this work, different DGMs with different number of nodes 

and hidden layers will be implemented) and averaging them using weights based on accuracy, 

in order to minimize modelling errors and bias. After the successful implementation of the 

model (MS6), synthetic data files will be generated. 

With the current advances in the field of AI, generation of synthetic data from ML techniques 

has attracted a lot of attention lately. State-of-the-art ML algorithms include Bayesian networks 

(BNs) and neural networks using data augmentation methods. In this domain, Generative 

Adversarial Networks (GANs) have become particularly popular as a method to generate 

synthetic data and to build robust models with less biased data. In the health sector, GANs 

method has been used successfully for unsupervised learning tasks and to generate health data. 
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A general limitation of GANs is the inability for generating categorical synthetic data sets. To 

alleviate the GANs drawback, recent works introduced improved generative GANs based 

methods (e.g., medGAN, HealthGAN, etc.). Such methods can handle mixed categorical and 

discrete data and have already been used to generate synthetic data related to cancer. The 

HealthGAN method was developed as an open-source Python package available in GitHub 

(GitHub - TheRensselaerIDEA/synthetic_data: Repository for the UHF synthetic data project). 

From a literature search, other open-source software packages do exist for synthetic data 

generation (e.g., the R packages synthpop [8] and SimPop [9], the Python package 

DataSynthesizer [10], and the Java-based simulator Synthea [12]). Though, such generators 

(e.g., Synthea [5]) are based on publicly available summary statistic data, and therefore they do 

not provide the flexibility of creating generative models faithfully resembling real data.  

In this proposal, improved generative GANs will be utilised for creating privacy preserving 

synthetic health data. Initially, the real-world data are gathered, pre-processed, and then used 

to train the generator model inside the secure environment. Then the model (no need for real 

data to generate the synthetic ones) is exported outside the secure environment. Finally, data is 

generated using the model, which can be then used for different applications. 

Advantages of this methodology include the effectiveness to capture resemblance, privacy, 

utility and footprint using novel and existing metrics. In addition, this method generates high 

quality synthetic data by maintaining the relationships that exist in real patient data. It deviates 

from the classical methods by focusing on methods that create new data points that 

approximately mimic the real data rather than altering the real data points.  

 

5.3 Development of the data generator model and results   

5.3.1 Ensemble data generator  

Initially, an ensemble approach was utilised to create synthetic data by combining two different 

methods: k-means clustering and resampling (bootstrap).  

For the k-means clustering method, the procedure is as follows: 

The generator first applies k-means clustering to the numeric columns of the original data set. 

It clusters similar data points into groups (clusters) based on their attributes. Then, the numeric 

columns are isolated from the data set, and k-means clustering is performed on these columns 

to identify clusters. The centroid (mean) of each cluster is used to create synthetic data by 

representing the characteristics of each cluster. 

For the resampling (bootstrap) method, the procedure is as follows: 

The generator uses resampling, specifically the bootstrap method, to create synthetic data. 

Random samples are drawn with replacement from the original data set. This resampling 

technique generates synthetic data by replicating observations from the original data set. 

Combining the two methods for synthetic data generation:  

The generator then combines the synthetic data sets created from the k-means clustering and 

resampling methods. In particular, the synthetic data sets generated by k-means clustering 

(based on cluster centroids) and resampling are merged to form an ensemble or combined 

synthetic data set. 

Output: 

The final output of the generator is an ensemble synthetic data set that incorporates 

characteristics from both the k-means clustering-based centroids and the resampled data. The 

aim of this process is to create a diverse synthetic data set that captures various aspects of the 

https://github.com/TheRensselaerIDEA/synthetic_data
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original data through clustering-based representation and resampling, providing a more 

comprehensive synthetic representation for further analysis or modelling purposes.  

The results obtained from the ensemble synthetic data set are summarized in Figure 5, with 

pMSE ranging from 0.005 to 2.59. It can be observed that the ensemble technique outperformed 

the generator implemented by the open-source software package synthpop. 

 

 

 
Figure 5. Screenshots of the results generated by an ensemble generator.  

 

5.3.2 AI-driven generator with ensemble modelling  

To further improve the performance of the generator, an innovative AI-powered generation 

system that leverages machine learning principles (i.e., DGMs) and ensemble modelling was 

developed to create privacy preserving synthetic heath data. The innovative character of this 

generator lies in the usage of the ensemble modelling technique for pooling the results of 

multiple models (different DGMs with different number of nodes and hidden layers were 

implemented) and averaging them using weights based on accuracy, to minimize modelling 

errors and bias. 

The results obtained from the AI-powered generator are summarized in Figure 6, with pMSE 

ranging from 0.06 to 1.92.  
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Figure 6. Screenshots of the results generated by the AI-powered generator.  

 

6. Performance evaluation metrics 

The generated synthetic data will be first tested for privacy, resemblance, and utility. During 

the evaluation, different metrics (e.g., pairwise correlation difference, log-cluster, support 

coverage, nearest neighbours’ adversarial accuracy and cross-classification) will be used to 

define the extent to which the statistical properties of the real data are captured to the synthetic 

data set and how much of the real data may be revealed (directly or indirectly) by the synthetic 

data. To this end, different utility assessment methods for synthetic data and privacy metrics 

will be used. 

 

6.1 Common metrics used in the literature  

Metrics commonly used in the literature include the Membership Inference Attack, ground truth 

tables, receiver operating characteristic (ROC) curve, Hellinger distance, correlations, 

statistical distances (such as the total variation distance and exact matches between synthetic 

and original data), precision, accuracy and recall [5], [15]. Data statistics (such as the variable 

distribution, mean and median), correlation differences and the Cox-regression analysis can 

also be used for the evaluation process. Other performance evaluation metrics include the 

nomogram and the k-fold cross-validation [1]. 
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A detailed literature review and a final list of the evaluation metrics (that will be used in this 

project) will be derived in Task 4.1 (Deliverable 6 of WP4). The final list will include only the 

privacy and utility metrics applicable for this specific project application and the ones that best 

capture the quality of the artificially generated data. 

 

7. Conclusions 

This document provided the detailed methodology for generating synthetic data and the 

procedure to adapt the methodology for cancer data. It also described the collected data and 

created final data set. Finally, a detailed description of the data generator model was also 

provided along with common evaluation metrics.  
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